
© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license https://creativecommons.org/licenses/by-nc-nd/4.0/ 

Commentary on Chen et al. (2022): The need for continued 
methodological research on leveraging information in 

secondary endpoints for more efficient RCTs  
Jack M. Wolfa*, Joseph S. Koopmeinersa, David M. Vocka 

 

aDivision of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, 2221 University 
Ave SE Minneapolis, MN 55414 

  
*Corresponding author. E-mail address: wolfx681@umn.edu. 

Abstract:  Chen et al. (2022) recently proposed a set of estimating equations that incorporate 

data from secondary endpoints to improve precision in parameter estimates related to a 

primary endpoint. We were motivated to translate their methodology to the context of 

randomized controlled trials to gain precision in treatment effect estimation using data from 

secondary endpoints. Our results suggest that this estimator cannot gain efficiency in this 

context because of random treatment assignment, especially when there is a treatment effect 

on secondary endpoints, and that further methodological work in this area is needed. 
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1. Introduction 
Recently, Chen et al. developed a set of augmented estimating equations that directly 

incorporate data from auxiliary sources to gain efficiency in parameter estimates (1,2). While 

they were motivated by the analysis of observational data, it is natural to consider if their 

approach can be adapted to gain efficiency in RCTs. 

Our interest is motivated by research on very low nicotine content cigarettes to inform policy-

level nicotine standards that would impact all people who smoke in the United States. Although 

previous RCTs (3–7) have shown that these standards reduce tobacco product use behaviors on 

average in the general United States smoking population, additional investigations are 

necessary to ensure that these policies are effective in specific vulnerable subpopulations 

including but not limited to people who smoke with schizophrenia, Black people who smoke, 

and low socioeconomic status people who smoke. However, it is financially and practically 

infeasible to run fully powered RCTs to precisely estimate subpopulation treatment effects in all 

of these subpopulations. Thus, we wish to leverage additional information to gain efficiency to 

make such analyses feasible with smaller sample sizes–either in small individual trials or in 

subgroup analyses of completed trials. We hope to gain efficiency using information encoded in 

secondary endpoints regularly collected in these trials including biomarkers of nicotine and 

tobacco use and psychological measures of nicotine dependence. 

2. Summary of Chen et al. (2022) 
We begin by briefly summarizing the proposed estimator. Consider the following estimating 

equation for estimating the parameter of interest, 𝛽𝛽: ∑ 𝑔𝑔𝑛𝑛
𝑖𝑖=1 (𝑌𝑌𝑖𝑖,1;𝛽𝛽) = 0, where 𝑌𝑌𝑖𝑖,1 is the 



primary endpoint. They propose to fit a working model for a secondary endpoint, 𝑌𝑌𝑖𝑖,2, to 

improve upon the efficiency for estimating 𝛽𝛽 by solving the following weighted estimating 

equations based on empirical likelihood theory (8): 

��̂�𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑔𝑔(𝑌𝑌𝑖𝑖,1;𝛽𝛽) = 0. 

(1) 
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ℎ(𝑌𝑌𝑖𝑖,2;𝜃𝜃) = 0, 

(2) 

where ℎ(𝑌𝑌𝑖𝑖,2;𝜃𝜃) is a set of estimating equations for 𝑌𝑌𝑖𝑖,2 such that E{ℎ(𝑌𝑌𝑖𝑖,2;𝜃𝜃∗)} = 0 for some 𝜃𝜃∗. 

Importantly, ℎ must be over-identified to gain efficiency. For example, instead of standard least 

squares linear regression on covariates 𝑋𝑋𝑖𝑖, which would imply ℎ(𝑌𝑌𝑖𝑖,2;𝜃𝜃) = 𝑋𝑋𝑖𝑖(𝑌𝑌𝑖𝑖,2 − 𝑋𝑋𝑖𝑖𝑇𝑇𝜃𝜃), they 

suggest adding “redundant” covariates 𝑍𝑍𝑖𝑖  which are assumed to be orthogonal to the residuals: 

ℎ(𝑌𝑌𝑖𝑖,2;𝜃𝜃) = (𝑋𝑋𝑖𝑖𝑇𝑇 ,𝑍𝑍𝑖𝑖𝑇𝑇)𝑇𝑇(𝑌𝑌𝑖𝑖,2 − 𝑋𝑋𝑖𝑖𝑇𝑇𝜃𝜃). Simulation studies and theoretical arguments indicate that 

this over-identification and weighting lead to efficiency gains with Var(�̂�𝛽𝑌𝑌1&𝑌𝑌2) ≤ Var(�̂�𝛽𝑌𝑌1) 

where �̂�𝛽𝑌𝑌1  and �̂�𝛽𝑌𝑌1&𝑌𝑌2  are the respective solutions to ∑ 𝑔𝑔𝑛𝑛
𝑖𝑖=1 (𝑌𝑌𝑖𝑖,1;𝛽𝛽) = 0 and 

∑ �̂�𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑔𝑔(𝑌𝑌𝑖𝑖,1;𝛽𝛽) = 0. 

3. Translation to Randomized Controlled Trials 
We now consider this estimator in the context of a RCT. Suppose we have data 

(𝐴𝐴𝑖𝑖,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2,𝑌𝑌𝑖𝑖,1,𝑌𝑌𝑖𝑖,2)𝑖𝑖=1𝑛𝑛  where 𝐴𝐴𝑖𝑖  is a binary treatment indicator, (𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2) are two baseline 



characteristics, and (𝑌𝑌𝑖𝑖,1,𝑌𝑌𝑖𝑖,2) are measurements of the primary endpoint and secondary 

endpoint, respectively. Importantly, due to randomization, 𝐴𝐴𝑖𝑖  is independent of (𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2). In 

this setting, the standard estimating equation for the average treatment effect, identified as 

𝛽𝛽1 = E(𝑌𝑌𝑖𝑖|𝐴𝐴 = 1) − E(𝑌𝑌𝑖𝑖|𝐴𝐴 = 0), is given by 

𝑔𝑔(𝑌𝑌𝑖𝑖,1;𝛽𝛽) = (1,𝐴𝐴𝑖𝑖)𝑇𝑇{𝑌𝑌𝑖𝑖,1 − (𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝑖𝑖)} 

and the difference in sample means is the solution for 𝛽𝛽1. To gain efficiency on �̂�𝛽, we need to 

specify an over-identified set of estimating equations for the secondary endpoint: ℎ(𝑌𝑌𝑖𝑖,2;𝜃𝜃). 

Following the authors’ suggestion, we will consider estimating equations with additional 

constraints for over-identification. For illustrative purposes, we suppose that the second 

endpoint’s first moment is linear in (1,𝐴𝐴𝑖𝑖,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2). 

First, we consider estimating equations that place constraints on the treatment indicator: 

ℎ(𝑌𝑌𝑖𝑖,2;𝜃𝜃) = (1,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2,𝐴𝐴𝑖𝑖)𝑇𝑇{𝑌𝑌𝑖𝑖,2 − (𝜃𝜃0 + 𝜃𝜃1𝑋𝑋𝑖𝑖,1 + 𝜃𝜃2𝑋𝑋𝑖𝑖,2)}. 

This can be thought of as a linear model for 𝑌𝑌𝑖𝑖,2 as a function of (1,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2) which is fit via 

empirical likelihood with the additional constraint that ∑ �̂�𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝐴𝐴𝑖𝑖{𝑌𝑌𝑖𝑖,2 − (𝜃𝜃�0 + 𝜃𝜃�1𝑋𝑋𝑖𝑖,1 +

𝜃𝜃�2𝑋𝑋𝑖𝑖,2)} = 0. Recall that these estimating equations must satisfy E{ℎ(𝑌𝑌𝑖𝑖,2;𝜃𝜃1∗)} = 0 for some 

𝜃𝜃1∗. For this equality to hold, it must be assumed that 𝐴𝐴𝑖𝑖  is orthogonal to 𝑌𝑌𝑖𝑖,2 − E(𝑌𝑌𝑖𝑖,2|𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2). 

However, this orthogonality cannot hold if there is a treatment effect on 𝑌𝑌𝑖𝑖,2. Indeed, in our 

preliminary simulations, the iterative estimation algorithm for 𝑝𝑝𝚤𝚤�  and 𝜃𝜃� was unable to converge 

upon a global maximizer for ∏ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1  with these constraints, further supporting the infeasibility 

of these estimating equations for the secondary endpoint. Thus, we cannot include 𝐴𝐴𝑖𝑖  as a 



“redundant” covariate to gain efficiency and must strategically add constraints based on other 

covariates, which may be conditionally independent of the secondary endpoint, as we do in the 

following simulation study. 

4. Simulation Study and Results 
We consider data resembling a moderate-sized RCT with 500 participants to detect a 

hypothesized standardized treatment effect of 0.25 on the primary endpoint with 80% power. 

There are two baseline covariates, (𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2), which are independent of treatment and follow a 

standard bivariate normal distribution with correlation 0.7. The primary endpoint has mean 

E(𝑌𝑌𝑖𝑖,1|𝐴𝐴𝑖𝑖,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2) = 0.25𝐴𝐴𝑖𝑖 + 0.5𝑋𝑋𝑖𝑖,1 and the secondary endpoint has mean 

E(𝑌𝑌𝑖𝑖,2|𝐴𝐴𝑖𝑖,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2) = 0.5𝐴𝐴𝑖𝑖 + 𝑋𝑋𝑖𝑖,2, where, conditional on (𝐴𝐴𝑖𝑖 ,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2), the endpoints follow a 

bivariate normal distribution with variance 1 and correlation 0.7. Here, the two covariates can 

be viewed as baseline measurements of the two endpoints. 

To gain efficiency from the secondary endpoint, we use the following correctly specified 

working model: E(𝑌𝑌𝑖𝑖,2|𝐴𝐴𝑖𝑖,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2) = 𝜃𝜃0 + 𝜃𝜃1𝐴𝐴𝑖𝑖 + 𝜃𝜃2𝑋𝑋𝑖𝑖,2 and place an additional orthogonality 

constraint with respect to 𝑋𝑋𝑖𝑖,1, resulting in the estimating equations: 

ℎ(𝑌𝑌𝑖𝑖,2;𝜃𝜃) = (1,𝐴𝐴𝑖𝑖 ,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2)𝑇𝑇{𝑌𝑌𝑖𝑖,2 − (𝜃𝜃0 + 𝜃𝜃1𝐴𝐴𝑖𝑖 + 𝜃𝜃2𝑋𝑋𝑖𝑖,2)}. 

These estimating equations were then used in the constraints given in Equation 2 to find the 

optimal subject-specific weights �̂�𝑝𝑖𝑖 maximizing ∏ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 . We then considered two sets of 

estimating equations for the treatment effect on the primary endpoint. The first corresponds to 

the sample mean difference: 



𝑔𝑔1(𝑌𝑌𝑖𝑖,1;𝛽𝛽) = (1,𝐴𝐴𝑖𝑖)𝑇𝑇{𝑌𝑌𝑖𝑖,1 − (𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝑖𝑖)}. 

And the second adjusts for the baseline covariates: 

𝑔𝑔2(𝑌𝑌𝑖𝑖,1;𝛽𝛽) = (1,𝐴𝐴𝑖𝑖 ,𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2)𝑇𝑇{𝑌𝑌𝑖𝑖,1 − (𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝑖𝑖 + 𝛽𝛽2𝑋𝑋𝑖𝑖,1 + 𝛽𝛽3𝑋𝑋𝑖𝑖,2)}. 

In both cases, the treatment effect is given by the parameter 𝛽𝛽1. We then obtained the 

unweighted and weighted solutions to both sets of estimating equations for four total 

estimates per simulation. 

We performed 2000 Monte Carlo simulations. For each simulation, we recorded the parameter 

estimates for the treatment effect 𝛽𝛽1 as well as other nuisance parameters. We summarized 

the empirical standard error for each parameter under each estimator (noting that all 

estimators had negligible bias). Our results indicate that this approach offers no efficiency gain 

for the treatment effect, 𝛽𝛽1. However, in the covariate adjusted model, there are notable 

efficiency gains for the effects of 𝑋𝑋𝑖𝑖,1 and 𝑋𝑋𝑖𝑖,2. Efficiency was gained on the effect of 𝑋𝑋𝑖𝑖,1 

through 𝛽𝛽2, which was not included in the working model for the secondary endpoint but used 

to generate an additional constraint and on the effect of 𝑋𝑋𝑖𝑖,2 through 𝛽𝛽3, which appeared in the 

working model for the secondary endpoint but is correlated with 𝑋𝑋𝑖𝑖,1 (Table 1). Similar findings 

were observed under simulations with a null treatment effect for the primary and secondary 

endpoint. 

  



Table 1: Empirical standard errors estimating model coefficients with and without using data 
from the secondary endpoint. The estimate for the treatment effect is given via 𝛽𝛽1. 

 Unadjusted  Adjusted 
Parameter Primary 

Endpoint Only 
 Secondary 
Endpoint Added 

 Primary 
Endpoint Only 

Secondary 
Endpoint Added 

𝛽𝛽0 0.069 0.069  0.062 0.062 
𝛽𝛽1 0.098 0.099  0.088 0.088 
𝛽𝛽2    0.061 0.044 
𝛽𝛽3    0.062 0.055 

5. Discussion 
Most, if not all trials, collect data on secondary endpoints. However, there has been limited 

methodological research to leverage information from these endpoints to gain efficiency in 

RCTs. We attempted to translate an estimator that uses data from secondary endpoints 

proposed by Chen et al. (2022) to improve treatment effect estimation. Our results indicate 

that in order to gain efficiency for a specific parameter under the proposed estimator with one 

secondary endpoint, the covariate associated with that parameter must (a) be omitted from the 

outcome model for the secondary data and used to generate an additional constraint or (b) be 

associated with a covariate satisfying (a). When considering a treatment indicator in an RCT, the 

constraint required in (a) cannot be satisfied so long as there is a treatment effect on the 

secondary endpoint, and due to randomization, the treatment will be independent of all 

covariates, thus not satisfying (b). Although this novel estimator demonstrates strong potential 

when analyzing observational data, other innovative methods are required to borrow efficiency 

from secondary endpoints within RCTs. 
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