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Abstract
Background/Aims: Secondary analyses of randomized clinical trials often seek to identify subgroups with differential
treatment effects. These discoveries can help guide individual treatment decisions based on patient characteristics
and identify populations for which additional treatments are needed. Traditional analyses require researchers to pre-
specify potential subgroups to reduce the risk of reporting spurious results. There is a need for methods that can detect
such subgroups without a priori specification while allowing researchers to control the probability of falsely detecting
heterogeneous subgroups when treatment effects are uniform across the study population.
Methods: We propose a permutation procedure for tuning parameter selection that allows for Type-I error control when
testing for heterogeneous treatment effects framed within the Virtual Twins procedure for subgroup identification.
We verify that the Type-I error rate can be controlled at the nominal rate and investigate the power for detecting
heterogeneous effects when present through extensive simulation studies. We apply our method to a secondary
analysis of data from a randomized trial of very low nicotine content cigarettes.
Results: In the absence of Type-I error control, the observed Type-I error rate for Virtual Twins was between 99 and
100%. In contrast, models tuned via the proposed permutation were able to control the Type-I error rate and detect
heterogeneous effects when present. An application of our approach to a recently completed trial of very low nicotine
content cigarettes identified several variables with potentially heterogeneous treatment effects.
Conclusions: The proposed permutation procedure allows researchers to engage in secondary analyses of clinical
trials for treatment effect heterogeneity while maintaining the Type-I error rate without pre-specifying subgroups.
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Introduction
The primary objective of a randomized controlled trial (RCT)
is typically to estimate and test the marginal treatment effect
(i.e., the average treatment effect aggregated across the
entire population). However, identifying subgroups with a
differential response to treatment has long been an important
scientific and secondary aim, which has grown in importance
in the era of personalized medicine. This focus is motivated
by the idea that the treatment effect may vary from individual
to individual across the population, commonly referred to as
treatment effect heterogeneity. Towards this aim, researchers
are interested in identifying characteristics that can explain
differences in the treatment effect and subgroups for which
the treatment effect is different than the effect in the broader
population. Characterizing treatment effect heterogeneity
can help effectuate personalized medicine, deepen our
understanding of possible treatment mechanisms, and
suggest subgroups which may benefit from different or more
intensive intervention. For example, in studies evaluating
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proposed regulations that would affect all members of a
population, such as trials of very low nicotine content
cigarettes under the broader umbrella of tobacco regulatory
science1 which motivate our work here, it is important to
identify subgroups that may not have an ideal response to
the policy so that additional targeted interventions can be
developed in support of these populations2.

Traditionally, subgroup analyses in an RCT must be
pre-specified in the statistical analysis plan. Although pre-
specification permits easier control of the family-wise error
rate, the number of pre-specified subgroups is typically
limited, involving only a small number of covariates, and any
categorization of a continuous variable must be pre-specified
as well.

Given the limitations of pre-specifying subgroups, many
statistical methods for evaluating effect heterogeneity and
discovering subgroups using flexible, data-adaptive methods
have been proposed and studied. Existing tree-based
methods include interaction trees3, honest causal trees4,
and GUIDE5. Moreover there exist ensemble methods that
leverage the estimates of many models such as random
forests of interaction trees6 and STIMA7, which combines
a multiple linear regression model with a regression tree
to detect interaction effects. Bayesian approaches have also
been proposed8,9.
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While identifying heterogeneous subgroups is an impor-
tant scientific aim, there is a long history of finding spurious
subgroups that cannot be replicated in subsequent trials10–14.
Thus, researchers are naturally concerned with the a priori
probability of incorrectly detecting subgroups with differen-
tial treatment effects when there is a uniform treatment effect
across the study population and whether the aforementioned
probability can be controlled while maintaining sufficient
power to detect heterogeneity when present. This is a par-
ticular concern for many data-adaptive approaches for which
such control may be difficult to implement.

In this paper, we propose a permutation procedure for
identifying treatment effect heterogeneity with Type-I error
rate control. We frame our approach in the context of Virtual
Twins15, which is a popular two stage approach to subgroup
detection that has been widely used and discussed since its
original publication16–20. Despite the method’s wide usage,
there is currently little guidance on how to select penalty
parameters needed to fit such models. Many researchers
are left using default software settings in their applications
which are typically selected with predictive performance in
mind. We address this limitation by conceptualizing Virtual
Twins as a hypothesis testing procedure and showing how
parameters can be tuned to accurately control the associated
Type-I error rate.

The rest of the paper proceeds as follows. First, we
establish notation and review Virtual Twins as originally
proposed. Next, we propose a permutation procedure
to assist tuning parameter selection and Type-I error
control. Then, we detail several simulation studies to
assess our proposed method’s performance in a variety of
scenarios. Finally, we apply this method to data from an
RCT of very low nicotine content cigarettes to describe
patient characteristics that may impact smokers’ individual
responses to the intervention.

Notation and preliminaries

Notation
Consider the data (Yi, Ti,Xi), i = 1, . . . , n from an RCT
with response Yi, binary treatment indicator Ti, and
covariates Xi = (X1i, . . . , Xpi) (which may be continuous
or categorical). We write the conditional mean of Yi given Ti
andXi as

E(Yi|Ti,Xi) = h(Xi) + Tig(Xi) (1)

We assume that Ti is associated with Yi only through its first
moment and that it does not affect the conditional variance
or any higher moments of the response. However, we do not
require such assumptions about the relationship between all
other covariates and the response. The conditional average
treatment effect for each subject is E(Yi|Ti = 1,Xi)−
E(Yi|Ti = 0,Xi) = g(Xi), which we denote as Zi.

Virtual Twins
Virtual Twins is a two-step approach that first estimates
Zi, typically using flexible regression techniques, and
then models the estimated Ẑi using parsimonious and
interpretable models. Although in principle an analyst
could fit the main effect and interpretable treatment model

simultaneously, the two-step procedure provides maximum
flexibility to explain variability in the main effects in Step 1,
while providing an interpretable model in Step 2.

Step 1 Step 1 consists of estimating subjects’ outcomes
under both the control and treatment arms. This is
accomplished by splitting the data based on the value of Ti
and independently fitting flexible regression models f̂0(Xi)

and f̂1(Xi) to estimate E(Yi|Ti = 0,Xi) and E(Yi|Ti =
1,Xi) respectively. Each subject’s estimated conditional
average treatment effect is then given by Ẑi = f̂1(Xi)−
f̂0(Xi). The original paper proposed using random forests21

to estimate these quantities but other authors22 have
investigated the use of additional approaches to estimating
the response surface in Step 1 including linear models fit
using the lasso23, MARS24 and super learner25.

Step 2 In Step 2 the analyst uses a simple and interpretable
model such as a regression tree to model the estimated
conditional average treatment effect Ẑi as a function of the
covariates Xi. Variables included in this model are used to
determine which covariates modify the treatment effect and
identify subgroups of patients with homogeneous treatment
effects. The original paper supports both regression and
classification trees. Others22 have explored using the lasso
and conditional inference trees as possible Step 2 methods.

Type-I error rate control
The original presentation of Virtual Twins encourages
fitting the Step 2 models using a fixed list of tuning
parameters. While this approach has shown acceptable
performance, data-adaptive methods for parameter selection
based on performance metrics may be advantageous.
However, standard data-adaptive methods typically select
tuning parameters to maximize predictive performance
which may not be optimal in this context. First, such an
approach is not guaranteed to preserve any Type-I error
of detecting heterogeneous treatment effects. Second, the
estimated conditional average treatment effect (i.e., Ẑi) is
a deterministic function of the features and, therefore, data-
adaptive methods are likely to overfit the data. To address
these limitations, we propose a permutation based framework
to identify appropriate penalty parameters for a variety
of Step 2 methods to maintain the Type-I error rate for
concluding heterogeneity.

Framing as a hypothesis test
Controlling the Type-I error rate requires that we first frame
Virtual Twins as a hypothesis test with a null hypothesis of a
homogeneous treatment effect. This null hypothesis implies
that each subject’s treatment effect is equal and g(Xi) = ∆
for all i, so an individual’s conditional average response can
be simplified to:

E(Yi|Ti,Xi) = h(Xi) + Ti∆ (2)

We will reject the null hypothesis if the Step 2 model
estimating g(Xi) includes any covariates (e.g., a tree with at
least one split). Thus, a Type-I error corresponds to rejecting
the null hypothesis when g(Xi) is constant.
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Permutation procedure

We consider a class of methods for Step 2 which are fit by
specifying one penalty parameter where for any fixed data set
there exists a sufficiently large penalty parameter such that
the fitted model is constant for all inputs. Examples of such
methods include regression trees26, conditional inference
trees27, and the lasso23. We will henceforth refer to the
smallest penalty parameter that achieves this constant model
for a fixed data set as the minimal null penalty parameter.
Formally, we let θ̂N = min{θ : ĝ(Xi, θ) = d for all i} be
the minimal null penalty parameter of a given data set where
ĝ(Xi, θ) is the fitted Step 2 model given penalty parameter θ
for a given data set.

We wish to identify the penalty parameter θα such
that the procedure’s Type-I error rate is at most α for
any fixed 0 ≤ α ≤ 1. We estimate this parameter using a
permutation procedure. Permutation tests are typically used
to achieve exact inference in small sample sizes by deriving
the null distribution of the test statistic without model-
based assumptions. Our procedure slightly departs from this
framework to describe the null distribution of the minimal
null penalty parameter, θ̂N , which is then used for parameter
selection.

The procedure can be summarized as first permuting
the treatment indicators to preserve the covariate main
effects while eliminating potential treatment by covariate
interactions, then fitting the Step 1 model to this permuted
data to estimate the conditional average treatment effect
under the null model, and finally fitting the Step 2 model to
calculate θ̂N for the permuted data.

The proposed algorithm is as follows. First calculate the
estimated mean treatment effect ∆̂ and obtain Ỹi = Yi −
∆̂I(Ti = 1) to set the mean treatment effect to zero before
permuting the treatment indicators. Note that testing for
heterogeneity with Yi is equivalent to doing so with Ỹi. Then,
for each j where j = 1, . . . ,m for some large m,

1. Randomly permute the treatment indicator variables of
the original data set to obtain (Ỹi, T

∗(j)
i ,Xi).

2. Fit the Step 1 model on the permuted data to estimate
Ẑ

∗(j)
i for each i.

3. Let θ̂(j)N be the minimal null penalty parameter for the
Step 2 model fit for Ẑ∗(j)

i .

Then, let θ̂α be the 1− α percentile of θ̂(1)N , . . . , θ̂
(m)
N and

fit the Step 2 model for Ẑi estimated through Step 1 on the
original data using the penalty parameter θ̂α.

This permutation procedure can be reframed as a
permutation test to leverage existing theory. Consider the
test statistic θ̂N and the accompanying hypothesis test that
rejects the null hypothesis of no effect heterogeneity if
θ̂N > θα. We wish to identify the largest critical value θα
such that Pr(θ̂N > θα|H0) ≤ α. This can be accomplished
by taking the 1− α percentile of the null distribution of
θ̂N which we generate via the permutation procedure. This
permutation test is valid because after permuting we have
data generated equivalent in distribution under the null
hypothesis that E(Ỹi|Ti,Xi) = h(Xi) (recall the the main
effect of treatment is 0 with Ỹi).

Simulation studies

Simulation study design
Data were generated from the model Yi = h(Xi) +

Tig(Xi) + εi where εi
iid∼ N(0, σ2) for i = 1, . . . , 1000.

Covariate vectors Xi consisted of p covariates with p =
10, 20, 50 with continuous and binary variables in a 4:1 ratio.
Continuous covariates were generated from a multivariate
normal distribution with an AR(1) correlation structure, and
binary covariates were simulated from independent Bernoulli
distributions. Treatment indicators were randomly assigned
to give a 1:1 allocation ratio with 500 patients per arm.

Each subject’s conditional average treatment effect was
given via g(Xi). We considered a null scenario where g(Xi)
was constant for all Xi. Under this scenario we expected
our permutation procedure to falsely detect heterogeneity
with probability α. We also simulated scenarios where g
was a linear and nonlinear function of Xi to assess our
permutation procedure’s power. The nonlinear g determined
the conditional average treatment effect by partitioning the
covariate space through several splits at the covariates’
true mean values along with one or two interaction terms,
depending on the number of covariates. The function h(Xi)
can be viewed as a patient’s expected outcome under the
control. We examined scenarios where h was both a linear
and nonlinear function of the covariates. The nonlinear h
consisted of linear and quadratic terms, binary indicators
for whether a covariate was above its true mean value, and
covariate by covariate interactions.

We completed 2000 simulated trials for every combination
of p, g, and h. Full simulation details are available in Table
1. The average R2 when ignoring any treatment by covariate
interactions was about 0.7 in each simulation to resemble
our motivating data. Cohen’s f2, which measures the effect
size of the interaction, ranged from 0.01 to 0.03 under
simulations with effect heterogeneity. Additional details are
provided in the supplementary materials. Table S1 displays
the average R2 for each scenario both when ignoring and
including treatment by covariate interactions as well as
Cohen’s f2. In addition, we ran a similar simulation study
with increased residual variance to achieve an R2 of about
0.2 in all simulated datasets.

Methods Considered
We implemented our permutation procedure using various
methods for fitting models for Steps 1 and 2, the performance
of which have been evaluated in the context of Virtual
Twins22.

In Step 1 we considered using random forests and super
learner25. Random forests consisted of 1000 trees. The
library for the super learner models used a linear model tuned
using a lasso (L1) penalty, MARS24, and a random forest.

We considered the lasso23, regression trees26, and
conditional inference trees27 as Step 2 methods, all of
which require the specification of some penalty parameter
before they can be fit, which we tuned to control the
Type-I error rate. The lasso is a linear regression method
that penalizes the L1-norm of the non-intercept regression
coefficients to perform variable selection and regularization.
Our permutation procedure tuned the penalty term’s weight.
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Regression trees recursively partition the covariate space
to identify subgroups of the data with similar response
values. A dense tree is fit and then the optimal subtree
that minimizes a weighted loss function that combines the
mean squared error and the number of terminal nodes is
selected. The weight assigned to the number of terminal
nodes is the complexity parameter which we tuned through
our procedure. Like regression trees, conditional inference
trees also recursively partition the covariate space to identify
groups with similar responses. Unlike regression trees, which
are fit using measures of information, conditional inference
trees use a significance test for variable selection; the tree
only will split if a significance test comparing the mean
outcome between both considered subgroups has test statistic
greater than some pre-specified threshold, which we tuned
through our permutation procedure.

We tested all combinations of the discussed Step 1 and
Step 2 models using our permutation procedure with α =
0.2 and α = 0.05 and using standard parameter selection
techniques. Additional details are available in Table S2.

Summaries of performance
We evaluated the performance of our permutation procedure
using the following metrics:

Type-I error rate and power For each simulated trial
we recorded whether the Step 2 model included any
covariates or not. If the model included at least one
covariate, we concluded that the model detected treatment
effect heterogeneity. The average of this value across many
simulations corresponds to the Type-I error rate or the power,
depending on the absence or presence of treatment effect
heterogeneity, respectively.

Sensitivity and specificity Consider the partition
Xi = (XHeterogeneous

i ,XConstant
i ) such that g(Xi) =

g(XHeterogeneous
i ) for all i. We calculated the proportion

of covariates in XHeterogeneous
i that were included in the Step

2 model (sensitivity) as well as the proportion of covariates
inXConstant

i that were not included (specificity).

Individual treatment effect mean squared error We
assessed accuracy in modeling the conditional average
treatment effect by calculating the mean squared error:∑n
i=1[ĝ(Xi)− Zi]2/n where ĝ(Xi) is the fitted Step 2

model.

Simulation Results
Table 2 summarizes the proportion of simulated trials in
which at least one covariate was included in the Step 2 model
across different data generating models for g(Xi), h(Xi),
and number of covariates. In scenarios with a homogeneous
treatment effect, this corresponds to the Type-I error rate.
Implementations using standard approaches to selecting
tuning parameters had Type-I error rates of nearly 100%.
In contrast, when using our permutation procedure, we
observed empirical Type-I error rates approximately equal
to the targeted values. This metric is a model’s empirical
power in scenarios with effect heterogeneity. Across all such
scenarios, the highest power was obtained when using a
super learner model in Step 1 and the lasso to fit the Step 2

model (regardless of whether g(Xi) was linear or nonlinear).
These trends held regardless of the number of covariates but
the power for a specific combination of methods tended to
increase with the number of covariates (See Table S3 for
results when p = 20). We observed similar trends with less
power in supplemental simulations with a lower overall R2

value (Table S4).
Table S5 shows the sensitivity and specificity of each

combination of Step 1 and Step 2 methods for each scenario.
When the conditional average treatment effect was linear, the
controlled lasso had the highest sensitivity of all controlled
methods. When modeling a nonlinear conditional average
treatment effect with Type-I error control the lasso tended
to have the highest sensitivity of all methods for a given
error rate. The sensitivity was relatively constant regardless
of the number of covariates for all combinations of methods.
Nearly all methods that controlled the Type-I error rate
demonstrated near perfect specificity for all scenarios. When
the Type-I error rate was not controlled, the specificity
ranged from 0.01 to 0.96 and was lowest when the lasso was
used in Step 2.

Table S6 displays the estimated mean squared error for the
subject-specific conditional average treatment effect for all
combinations of Step 1 and Step 2 methods. In the absence
of treatment effect heterogeneity, the methods that did not
attempt to control the Type-I error rate had mean squared
errors substantially higher than their counterparts which
controlled the error rate. When the treatment effect was
heterogeneous, methods that fixed the Type-I error rate at
α = 0.2 tended to have the lowest mean squared error when
compared to models without Type-I error control and with
α = 0.05 for all Step 1 methods. The mean squared error
increased with the number of covariates except for models
controlling the Type-I error when the treatment effect was
homogeneous, for which the mean squared error remained
constant as the number of covariates increased. Across all 18
simulation scenarios, using super learner and the lasso to fit
the Step 1 and 2 models, respectively resulted in the smallest
mean squared error out of all method combinations which
control the Type-I error in Step 2.

Application
Smoking remains the leading cause of preventable death
in the United States. Currently, researchers are considering
the impact of multiple regulatory interventions to reduce
the negative health effects of cigarette smoking, including
reducing the nicotine content of cigarettes1,2,28–31. Reducing
the nicotine content of cigarettes would impact all smokers in
the United States. While RCTs have investigated the benefit
of such regulations on the U.S. smoking population, on
average, it is also important to identify potential subgroups
that receive less benefit from or are potentially harmed by
such regulations to design additional targeted interventions
to reduce smoking or minimize unintended consequences.

A recent RCT1 evaluated the impact of nicotine reduction
in a randomized, double-blind trial that assigned subjects to
one of three interventions: 1) immediate reduction in nicotine
content, 2) gradual reduction in nicotine content, and 3)
maintenance of standard tobacco cigarettes (i.e., the control
condition) following a 2:2:1 allocation ratio. Subjects were
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provided with cigarettes with nicotine content matching their
treatment assignment for a 20-week intervention period, and
the impact of nicotine reduction was evaluated by comparing
the change in average number of cigarettes smoked per day
from baseline to the last four weeks of the intervention.

Our application focused on comparisons between the
gradual nicotine reduction group and the immediate nicotine
reduction group as well as between the immediate reduction
group and the control. We used the same modeling
approaches in Step 1 and Step 2 as in our simulation study
using 40 covariates that included demographic information
and baseline smoking characteristics (Table S7 summarizes
the study population along these covariates). We recorded
which covariates were identified as having differential
treatment effects in the Step 2 model.

Application results
Table 3 displays the covariates included in each model with
Type-I error control when comparing the immediate and
gradual groups and the immediate and control groups. The
number of covariates included in each Step 2 model when the
Type-I error rate was not controlled is presented in Table S8.

Immediate versus control Models exploring the effect of
immediate reduction compared to the control detected at
most one covariate (age) when controlling the Type-I error
at 20%. Traditional approaches detected as many as 27
covariates. We note that due to the study design, this model
had fewer observations (n = 538) than when comparing
gradual to immediate reduction (n = 723) and had less
power to detect differential effects.

Immediate versus gradual When modeling the effect of
immediate versus gradual reduction using a random forest
for Step 1 and a regression tree for Step 2 (as done in the
original Virtual Twins paper) the covariates included are
dependent on whether the model was tuned to control the
Type-I error or not. When the error rate was not controlled
six covariates were found to modify the the treatment effect.
However, when controlling the error rate at either 20% or
5%, only total nicotine equivalents was found to modify the
treatment effect. All other method combinations found at
least one covariate in all but one case.

Given the combination’s superior performance in simu-
lation studies, we report the results found when when a
super learner model in Step 1 was paired with the lasso
in Step 2. We observed statistically significant treatment
effect heterogeneity at the 0.05 significance level with total
nicotine equivalents (nmol/ml) and cyanoethyl mercapturic
acid/creatinine urine (nmol/mg) identified as likely treatment
effect modifiers with estimated conditional average treat-
ment effect associated with immediate nicotine reduction
of ĝ(Xi) = 5.78 + 0.187Xi1 + 0.009Xi2, where Xi1 and
Xi2 are centered and scaled (by the IQR) measures of
total nicotine equivalents and cyanoethyl mercapturic acid,
respectively. The results have important implications for
tobacco regulatory science. While we observed significant
treatment effect heterogeneity, the average treatment effect
is 5.78 cigarettes per day. In contrast, the difference in
the treatment effect associated with a difference equivalent
to the interquartile range for total nicotine equivalents and
cyanoethyl mercapturic acid is less than one cigarettes per

day, which implies that the heterogeneity is small relative to
the average treatment effect and that all smokers are likely to
benefit from the intervention.

Discussion

We developed a permutation procedure that selects a tuning
parameter which simultaneously regularizes the treatment
effect heterogeneity and controls the Type-I error rate
for detecting treatment effect heterogeneity in the Virtual
Twins framework. This method both tests for heterogeneity
and fits an estimated model for the conditional average
treatment effect if there is heterogeneity. Our simulation
results indicate that this procedure can control the Type-I
error under a variety of null scenarios (e.g., with both linear
and nonlinear covariate main effects, different numbers of
measured covariates, etc.) and can detect treatment effect
heterogeneity when it is present. Application to data from
a recent RCT shows that when the Type-I error is not
controlled, models tend to include far too many covariates
to have face-validity or be useful to construct policy.
Conversely, when controlling the error rate, our approach
is able to detect covariates that are likely to modify the
treatment effect based on our biological understanding of the
intervention.

While many methods such as GUIDE, STIMA, and
interaction trees have been proposed to detect subgroups
with heterogeneous treatment effects or model the treatment
effect, most if not all require the selection of some penalty
parameter a priori. Proper specification of this parameter can
control the Type-I error rate to a desired level; however, there
is little to no guidance on how to select this parameter, and
existing guidance often focuses on the model’s mean squared
error and not its Type-I error rate.

Our approach differs by offering explicit guidelines on
how to select this parameter and control the overall Type-I
error rate. Moreover, we note that our permutation procedure
could be adjusted to aid parameter selection for GUIDE,
STIMA, and interaction trees to facilitate Type-I error
control.

Other methods control the Type-I error rate when testing
the existence of treatment by covariate interactions. Some
only offer a test for treatment effect heterogeneity and do
not offer a method for describing the treatment by covariate
interaction32,33. Additional work developed sophisticated
permutation procedures to obscure treatment by covariate
interactions while maintaining all other effects34. Although
our proposed permutation procedure correctly controls
the Type-I error of interest, these alternative permutation
strategies may be more efficient and are worth investigating
within our framework. Additionally, some have leveraged
these permutation procedures to propose a method with the
aim of identifying the appropriate complexity parameter for
regression trees for the conditional average treatment effect
estimated through propensity score matching such that the
Type-I error rate is maintained and the conditional average
treatment effect can be modeled if detected35. While our
proposed method shares the goal of tuning regression trees’
complexity parameters, it is far more general and can support
any Step 2 method with a single tuning parameter.
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While our method showed strong performance on both
simulated and real data, some drawbacks are worth noting.
First, although our approach controlled the Type-I error rate
regardless of the methods used in Steps 1 and 2, the power
depends on how well the model was matched to the true
data generative process. For example, although using the
lasso for Step 2 yielded the highest power in a majority
of scenarios, the power of tree-based methods tended to
be closer to the (optimal) power of methods using the
lasso when the true treatment effect was a nonlinear rather
than linear function of the covariate space. Additionally,
we note that permutation based tests are often not efficient
and that there is space to develop more powerful tests
that can maintain the Type-I error rate. Moreover, while
our approach maintains the Type-I error rate when testing
for treatment effect heterogeneity, it does not offer any
probabilistic statements about the specific variables included
in the model. That is, while the probability of including any
covariates under the null hypothesis is controlled, the a priori
probability of selecting a specific covariate when it does not
contribute to effect heterogeneity is unknown. Future work
could develop a hierarchical testing procedure to first assess
if there are heterogeneous effects via our proposed method
and then, if that null hypothesis is rejected, devise a way
to individually test the candidate covariates detected in the
final model for treatment interactions while controlling the
family-wise error rate. Additionally, the permutation process
itself imposes moderate computational costs. Because the
data must be permuted before the Step 1 model is fit (which
is often a dense ensemble method that requires multiple
fittings such as a random forest), the model must be refit for
each permutation, which can lead to nontrivial computational
demands. Finally, while our proposed method is situated
within the context of RCTs, future work exploring the
method’s performance when applied to observational studies
and extending the method to address any limitations in that
context would be beneficial.

Although traditional guidelines recommend identifying
potential subgroups a priori and testing for interactions to
control the family-wise Type-I error rate36, there is space
for data-driven discovery. Our proposed approach allows
researchers to control the Type-I error rate of an overall
test for treatment effect heterogeneity and identify covariates
and/or subgroups possibly associated with differential effects
for future investigation. We note that this does not alleviate
the need to account for conducting multiple hypothesis
tests (e.g., also testing for the marginal treatment effect).
However, our approach moves us towards a principled yet
data-driven approach to discovery.

Software and code

The R package tehtuner implements our proposed
method. The package and code to replicate the simulation
studies can be downloaded at https://github.com/
jackmwolf/tehtuner.
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Tables

Table 1. Simulation study details. We carried out 2000 simulations under every combination of h(Xi), g(Xi) and number of

covariates p. Patient outcomes were generated through the model Yi = h(Xi) + Tig(Xi) + εi where εi
iid∼ N(0, 4) and n = 1000.

p = 10 p = 20 p = 50

Covariates
Continuous (Xi1, . . . Xi8)T

iid∼ N(µ,Σ)

µ ∼ N(0, 3I8)

Σ = AR(1, ρ = 0.7)

(Xi1, . . . Xi16)T
iid∼ N(µ,Σ)

µ ∼ N(0, 3I16)

Σ = AR(1, ρ = 0.7)

(Xi1, . . . Xi40)T
iid∼ N(µ,Σ)

µ ∼ N(0, 3I40)

Σ = AR(1, ρ = 0.7)

Binary Xi9, Xi10
iid∼ Bernoulli(0.7) Xi17, . . . , Xi20

iid∼ Bernoulli(0.7) Xi41, . . . , Xi50
iid∼ Bernoulli(0.7)

Covariate Main Effects
Linear h1(Xi) = Xiβ

βj = 1.25 for j = 1, . . . , 10

h1(Xi) = Xiβ

βj =

{
1 for j = 1, . . . , 10, 17, 18

0 otherwise

h1(Xi) = Xiβ

βj =

{
1 for j = 1, . . . 12, 41, 42, 43

0 otherwise
Nonlinear h2(Xi) = Xi1 +Xi2 +Xi9 +Xi10 +

2
5∑
j=3

(Xij − µj)2 +

2
8∑
j=6

I(Xij > µj) +

1/2(Xi1 − µ1)(Xi2 − µ2)−
(Xi1 − µ1)Xi9

h2(Xi) = Xi1 +Xi2 +Xi17 +Xi18 +

5/4
6∑
j=3

(Xij − µj)2 +

5/4

10∑
j=7

I(Xij > µj) +

1/2(Xi1 − µ1)(Xi2 − µ2)−
(Xi1 − µ1)Xi17

h2(Xi) = Xi1 +Xi2 +Xi41 +Xi42 +Xi43 +

5/4
7∑
j=3

(Xij − µj)2 +

5/4

12∑
j=8

I(Xij > µj) +

1/2(Xi1 − µ1)(Xi2 − µ2)−
(Xi1 − µ1)Xi42

Conditional Average Treatment Effect
Null g0(Xi) = 2 g0(Xi) = 2 g0(Xi) = 2
Linear g1(Xi) = m+Xiβ

βj =

{
1/2 for j = 1, 9

0 otherwise

m = 2− 1

n

n∑
i=1

Xiβ

g1(Xi) = m+Xiβ

βj =

{
1/2 for j = 1, 2, 10, 17

0 otherwise

m = 2− 1

n

n∑
i=1

Xiβ

g1(Xi) = m+Xiβ

βj =

{
1/2 for j = 1, 2, 10, 41

0 otherwise

m = 2− 1

n

n∑
i=1

Xiβ

Nonlinear g2(Xi) = m+ γ(Xi)

γ(Xi) = 1/2Xi9 + I(Xi1 > µ1) +

1/8(Xi1 − µ1)Xi9

m = 2− 1

n

n∑
i=1

γ(Xi)

g2(Xi) = m+ γ(Xi)

γ(Xi) = 1/2Xi17 + I(Xi1 > µ1) +

1/2I(Xi2 > µ2) + 1/4I(Xi10 > µ10) +

1/4(Xi1 − µ1)Xi17

m = 2− 1

n

n∑
i=1

γ(Xi)

g2(Xi) = m+ γ(Xi)

γ(Xi) = 1/2Xi41 + I(Xi1 > µ1) +

1/2I(Xi2 > µ2) + 1/4I(Xi10 > µ10) +

1/4(Xi1 − µ1)Xi41+

1/8(Xi2 − µ2)(Xi10 − µ10)

m = 2− 1

n

n∑
i=1

γ(Xi)
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Table 2. Proportion of simulations in which at least one covariate was
included in the Step 2 model across all tested combinations of Step 1
(columns) and Step 2 (rows) methods. This corresponds to the Type I
error rate for scenarios with homogeneous treatment effects and the
power otherwise.

p = 10 p = 50

RF SL RF SL

Homogeneous Treatment Effects; Linear Main Effects
LASSO(α = 0.2) 0.22∗ 0.21 0.19 0.18∗

R.Tree(α = 0.2) 0.21 0.21 0.20 0.21
C.Tree(α = 0.2) 0.22∗ 0.22∗ 0.19 0.20
LASSO(α = 0.05) 0.05 0.06 0.05 0.05
R.Tree(α = 0.05) 0.05 0.06 0.06 0.06
C.Tree(α = 0.05) 0.05 0.06 0.05 0.04

Homogeneous Treatment Effects; Nonlinear Main Effects
LASSO(α = 0.2) 0.19 0.22 0.21 0.20
R.Tree(α = 0.2) 0.19 0.20 0.21 0.20
C.Tree(α = 0.2) 0.19 0.21 0.21 0.19
LASSO(α = 0.05) 0.06 0.05 0.06∗ 0.06
R.Tree(α = 0.05) 0.06 0.06 0.06 0.06
C.Tree(α = 0.05) 0.06 0.06 0.06∗ 0.05

Linear Treatment Effects; Linear Main Effects
LASSO(α = 0.2) 0.45 0.55 0.76 0.92
R.Tree(α = 0.2) 0.39 0.34 0.68 0.71
C.Tree(α = 0.2) 0.44 0.39 0.74 0.79
LASSO(α = 0.05) 0.20 0.30 0.48 0.77
R.Tree(α = 0.05) 0.15 0.09 0.40 0.33
C.Tree(α = 0.05) 0.19 0.15 0.48 0.47

Linear Treatment Effects; Nonlinear Main Effects
LASSO(α = 0.2) 0.32 0.43 0.66 0.83
R.Tree(α = 0.2) 0.22 0.25 0.46 0.59
C.Tree(α = 0.2) 0.31 0.41 0.64 0.80
LASSO(α = 0.05) 0.09 0.19 0.34 0.64
R.Tree(α = 0.05) 0.06 0.08 0.18 0.29
C.Tree(α = 0.05) 0.09 0.16 0.32 0.57

Nonlinear Treatment Effects; Linear Main Effects
LASSO(α = 0.2) 0.57 0.71 0.57 0.77
R.Tree(α = 0.2) 0.52 0.46 0.54 0.61
C.Tree(α = 0.2) 0.55 0.42 0.56 0.60
LASSO(α = 0.05) 0.30 0.44 0.31 0.52
R.Tree(α = 0.05) 0.28 0.16 0.28 0.29
C.Tree(α = 0.05) 0.27 0.15 0.30 0.29

Nonlinear Treatment Effects; Nonlinear Main Effects
LASSO(α = 0.2) 0.39 0.65 0.46 0.68
R.Tree(α = 0.2) 0.25 0.36 0.34 0.45
C.Tree(α = 0.2) 0.38 0.59 0.45 0.64
LASSO(α = 0.05) 0.12 0.36 0.19 0.41
R.Tree(α = 0.05) 0.06 0.11 0.11 0.18
C.Tree(α = 0.05) 0.12 0.28 0.19 0.35

* For simulations with homogeneous treatment effects, 95% CI does not include α

Abbreviations: RF: random forest; SL: super learner; R.Tree: regression
tree; C.Tree: conditional inference tree
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Table 3. Variables determined to contribute to treatment effect heterogeneity for a given comparison of
treatments on change in cigarettes per day. Covariates which had nonzero effects in the Step 2 Virtual
Twins model fit for subjects’ estimated individual treatment effects with a given Step 1 model are marked
with a X. Variables with no estimated effect for all presented models are omitted.

Immediate vs. Gradual Immediate vs. Control

Step 1 Step 2 TNE CEMA CPD NNAL Total Age Total

LASSO(α = 0.2) X X 2 0
R.Tree(α = 0.2) X 1 X 1
C.Tree(α = 0.2) X 1 0
LASSO(α = 0.05) X X 2 0
R.Tree(α = 0.05) X 1 0

RF

C.Tree(α = 0.05) X 1 0

LASSO(α = 0.2) X X X 3 0
R.Tree(α = 0.2) X 1 0
C.Tree(α = 0.2) X 1 0
LASSO(α = 0.05) X X 2 0
R.Tree(α = 0.05) X 1 0

SL

C.Tree(α = 0.05) 0 0

Abbreviations: RF: random forest; SL: super learner; R.Tree: regression tree; C.Tree: conditional inference
tree; TNE: total nicotine equivalents; CEMA: cyanoethyl mercapturic acid; CPD: cigarettes per day; NNAL:
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol
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Supplemental Tables

Table S1. Simulations’ average R2 for the response both when assuming no covariate by treatment interaction (R2
0) and when

using the including the interaction (R2
A) calculated using the true data generative model. Cohen’s f2, given by

(R2
A −R2

0)/(1−R2
A), measures the additional effect of the treatment by covariate interaction. Values are R2

0 / R
2
A/ f

2.

Treatment Effect

Main Effects p Homogeneous Linear Nonlinear

10 0.71 / – / – 0.72 / 0.72 / 0.01 0.72 / 0.73 / 0.02
20 0.68 / – / – 0.70 / 0.71 / 0.03 0.69 / 0.70 / 0.03Linear
50 0.73 / – / – 0.74 / 0.75 / 0.03 0.73 / 0.74 / 0.03

10 0.75 / – / – 0.75 / 0.75 / 0.01 0.75 / 0.75 / 0.02
20 0.64 / – / – 0.64 / 0.66 / 0.03 0.64 / 0.65 / 0.03Nonlinear
50 0.69 / – / – 0.69 / 0.70 / 0.03 0.69 / 0.70 / 0.03

Table S2. Considered Step 1 and Step 2 methods for Virtual Twins. Step 1 models were fit on the subset of the data where Ti = 0
and its complement where Ti = 1 to estimate E(Yi|Ti = 0,Xi) and E(Yi|Ti = 1,Xi). A Step 2 model was then fit for the estimate
of E(Yi|Ti = 1,Xi)− E(Yi|Ti = 1,Xi) obtained by plugging in both Step 1 models’ estimates.

Method R Package::Function() Details

Step 1
Random Forest randomForestSRC::rfsrc() Fit with 1000 trees
SuperLearner SuperLearner::Superlearner() Consisted of a lasso (10-fold CV), random forest

(250 trees), and MARS (default settings) Larger
SuperLearner weights tuned via 3-fold CV.

Step 2
Lasso glmnet::glmnet() Penalty parameter lambda
Regression Tree rpart::rpart() Penalty parameter cp
Conditional Inference Tree party::ctree() Penalty parameter mincriterion passed

to ctree.control with (testtype =
"Teststatistic")

12
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Table S3. Proportion of simulations in which at
least one covariate was included in the Step 2
model across all tested combinations of Step 1
(columns) and Step 2 (rows) methods. This
corresponds to the Type I error rate for scenarios
with homogeneous treatment effects and the power
otherwise.

p = 20

RF SL

Homogeneous Treatment Effects; Linear Main Effects
LASSO(α = 0.2) 0.20 0.21
R.Tree(α = 0.2) 0.21 0.21
C.Tree(α = 0.2) 0.20 0.20
LASSO(α = 0.05) 0.06 0.05
R.Tree(α = 0.05) 0.05 0.06∗

C.Tree(α = 0.05) 0.06∗ 0.05

Homogeneous Treatment Effects; Nonlinear Main Effects
LASSO(α = 0.2) 0.20 0.20
R.Tree(α = 0.2) 0.20 0.20
C.Tree(α = 0.2) 0.20 0.19
LASSO(α = 0.05) 0.05 0.06
R.Tree(α = 0.05) 0.05 0.05
C.Tree(α = 0.05) 0.05 0.05

Linear Treatment Effects; Linear Main Effects
LASSO(α = 0.2) 0.85 0.93
R.Tree(α = 0.2) 0.76 0.66
C.Tree(α = 0.2) 0.84 0.76
LASSO(α = 0.05) 0.62 0.80
R.Tree(α = 0.05) 0.48 0.28
C.Tree(α = 0.05) 0.60 0.43

Linear Treatment Effects; Nonlinear Main Effects
LASSO(α = 0.2) 0.78 0.90
R.Tree(α = 0.2) 0.58 0.70
C.Tree(α = 0.2) 0.77 0.86
LASSO(α = 0.05) 0.48 0.70
R.Tree(α = 0.05) 0.27 0.38
C.Tree(α = 0.05) 0.46 0.66

Nonlinear Treatment Effects; Linear Main Effects
LASSO(α = 0.2) 0.69 0.80
R.Tree(α = 0.2) 0.66 0.62
C.Tree(α = 0.2) 0.68 0.59
LASSO(α = 0.05) 0.42 0.56
R.Tree(α = 0.05) 0.39 0.29
C.Tree(α = 0.05) 0.40 0.29

Nonlinear Treatment Effects; Nonlinear Main Effects
LASSO(α = 0.2) 0.58 0.77
R.Tree(α = 0.2) 0.45 0.57
C.Tree(α = 0.2) 0.56 0.74
LASSO(α = 0.05) 0.29 0.51
R.Tree(α = 0.05) 0.18 0.28
C.Tree(α = 0.05) 0.27 0.45

* For simulations with homogeneous treatment effects,
95% CI does not include α.

Abbreviations: RF: random forest; SL: super
learner; R.Tree: regression tree; C.Tree: conditional
inference tree
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Table S4. Proportion of simulations in which at least one covariate was included in the Step 2 model across simulations with
R-squared values around 20%. This corresponds to the Type I error rate for scenarios with homogeneous treatment effects and the
power otherwise.

p = 10 p = 20 p = 50

RF SL RF SL RF SL

Homogeneous Treatment Effects; Linear Main Effects
LASSO(α = 0.2) 0.21 0.21 0.20 0.19 0.20 0.19
R.Tree(α = 0.2) 0.20 0.21 0.19 0.18∗ 0.20 0.21
C.Tree(α = 0.2) 0.22 0.22∗ 0.20 0.18∗ 0.19 0.21
LASSO(α = 0.05) 0.06∗ 0.06 0.06∗ 0.05 0.05 0.05
R.Tree(α = 0.05) 0.06 0.05 0.06 0.05 0.05 0.06
C.Tree(α = 0.05) 0.07∗ 0.06 0.06 0.05 0.05 0.06

Homogeneous Treatment Effects; Nonlinear Main Effects
LASSO(α = 0.2) 0.21 0.21 0.20 0.19 0.19 0.20
R.Tree(α = 0.2) 0.20 0.21 0.19 0.19 0.18 0.20
C.Tree(α = 0.2) 0.22 0.20 0.20 0.20 0.18 0.20
LASSO(α = 0.05) 0.06 0.06 0.05 0.06 0.06 0.06
R.Tree(α = 0.05) 0.06 0.06 0.05 0.05 0.06 0.05
C.Tree(α = 0.05) 0.06 0.05 0.05 0.05 0.06 0.06∗

Linear Treatment Effects; Linear Main Effects
LASSO(α = 0.2) 0.25 0.25 0.34 0.34 0.31 0.34
R.Tree(α = 0.2) 0.23 0.23 0.31 0.28 0.30 0.30
C.Tree(α = 0.2) 0.24 0.23 0.35 0.29 0.31 0.31
LASSO(α = 0.05) 0.07 0.08 0.13 0.14 0.11 0.13
R.Tree(α = 0.05) 0.07 0.06 0.12 0.09 0.11 0.09
C.Tree(α = 0.05) 0.07 0.06 0.13 0.09 0.11 0.09

Linear Treatment Effects; Nonlinear Main Effects
LASSO(α = 0.2) 0.24 0.25 0.33 0.34 0.29 0.31
R.Tree(α = 0.2) 0.22 0.21 0.30 0.26 0.27 0.27
C.Tree(α = 0.2) 0.24 0.24 0.33 0.33 0.29 0.30
LASSO(α = 0.05) 0.07 0.07 0.11 0.12 0.10 0.12
R.Tree(α = 0.05) 0.06 0.07 0.10 0.08 0.09 0.08
C.Tree(α = 0.05) 0.07 0.07 0.11 0.11 0.10 0.11

Nonlinear Treatment Effects; Linear Main Effects
LASSO(α = 0.2) 0.26 0.29 0.27 0.28 0.25 0.27
R.Tree(α = 0.2) 0.26 0.24 0.26 0.23 0.25 0.25
C.Tree(α = 0.2) 0.26 0.23 0.28 0.24 0.25 0.26
LASSO(α = 0.05) 0.09 0.09 0.10 0.11 0.08 0.09
R.Tree(α = 0.05) 0.07 0.06 0.09 0.07 0.08 0.08
C.Tree(α = 0.05) 0.08 0.07 0.09 0.06 0.08 0.07

Nonlinear Treatment Effects; Nonlinear Main Effects
LASSO(α = 0.2) 0.25 0.26 0.27 0.28 0.22 0.24
R.Tree(α = 0.2) 0.24 0.21 0.25 0.23 0.23 0.23
C.Tree(α = 0.2) 0.25 0.24 0.26 0.26 0.22 0.23
LASSO(α = 0.05) 0.07 0.08 0.08 0.09 0.08 0.08
R.Tree(α = 0.05) 0.07 0.06 0.08 0.06 0.07 0.06
C.Tree(α = 0.05) 0.07 0.07 0.08 0.08 0.08 0.08

* For simulations with homogeneous treatment effects, 95% CI does not include α
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Table S5. Mean sensitivity/specificity across all tested combinations of Step 1 (columns) and Step 2
(rows) methods.

p = 10 p = 20 p = 50

RF SL RF SL RF SL

Homogeneous Treatment Effects; Linear Main Effects
LASSO – / 0.13 – / 0.01 – / 0.25 – / 0.05 – / 0.48 – / 0.20
R.Tree – / 0.48 – / 0.65 – / 0.75 – / 0.79 – / 0.91 – / 0.91
C.Tree – / 0.64 – / 0.65 – / 0.83 – / 0.80 – / 0.94 – / 0.91
LASSO(α = 0.2) – / 0.97 – / 0.98 – / 0.99 – / 0.99 – / 0.99 – / 1.00
R.Tree(α = 0.2) – / 0.98 – / 0.98 – / 0.99 – / 0.99 – / 1.00 – / 1.00
C.Tree(α = 0.2) – / 0.98 – / 0.98 – / 0.99 – / 0.99 – / 1.00 – / 1.00
LASSO(α = 0.05) – / 0.99 – / 0.99 – / 1.00 – / 1.00 – / 1.00 – / 1.00
R.Tree(α = 0.05) – / 1.00 – / 0.99 – / 1.00 – / 1.00 – / 1.00 – / 1.00
C.Tree(α = 0.05) – / 0.99 – / 0.99 – / 1.00 – / 1.00 – / 1.00 – / 1.00

Homogeneous Treatment Effects; Nonlinear Main Effects
LASSO – / 0.16 – / 0.09 – / 0.23 – / 0.14 – / 0.45 – / 0.29
R.Tree – / 0.60 – / 0.61 – / 0.79 – / 0.78 – / 0.93 – / 0.92
C.Tree – / 0.68 – / 0.63 – / 0.85 – / 0.81 – / 0.95 – / 0.94
LASSO(α = 0.2) – / 0.97 – / 0.97 – / 0.99 – / 0.99 – / 0.99 – / 0.99
R.Tree(α = 0.2) – / 0.98 – / 0.98 – / 0.99 – / 0.99 – / 1.00 – / 1.00
C.Tree(α = 0.2) – / 0.98 – / 0.98 – / 0.99 – / 0.99 – / 1.00 – / 1.00
LASSO(α = 0.05) – / 0.99 – / 0.99 – / 1.00 – / 1.00 – / 1.00 – / 1.00
R.Tree(α = 0.05) – / 0.99 – / 0.99 – / 1.00 – / 1.00 – / 1.00 – / 1.00
C.Tree(α = 0.05) – / 0.99 – / 0.99 – / 1.00 – / 1.00 – / 1.00 – / 1.00

Linear Treatment Effects; Linear Main Effects
LASSO 0.92 / 0.12 1.00 / 0.01 0.89 / 0.24 1.00 / 0.07 0.79 / 0.48 0.92 / 0.23
R.Tree 0.39 / 0.46 0.62 / 0.75 0.47 / 0.80 0.50 / 0.91 0.43 / 0.93 0.47 / 0.96
C.Tree 0.42 / 0.63 0.61 / 0.75 0.46 / 0.86 0.51 / 0.92 0.41 / 0.96 0.47 / 0.96
LASSO(α = 0.2) 0.14 / 0.96 0.24 / 0.96 0.30 / 0.98 0.40 / 0.97 0.25 / 0.99 0.39 / 0.99
R.Tree(α = 0.2) 0.08 / 0.97 0.13 / 0.99 0.16 / 0.99 0.15 / 1.00 0.13 / 1.00 0.16 / 1.00
C.Tree(α = 0.2) 0.12 / 0.97 0.14 / 0.99 0.20 / 0.99 0.18 / 1.00 0.16 / 1.00 0.18 / 1.00
LASSO(α = 0.05) 0.06 / 0.98 0.13 / 0.99 0.19 / 0.99 0.29 / 0.99 0.13 / 1.00 0.28 / 0.99
R.Tree(α = 0.05) 0.04 / 0.99 0.04 / 1.00 0.10 / 1.00 0.07 / 1.00 0.08 / 1.00 0.08 / 1.00
C.Tree(α = 0.05) 0.06 / 0.99 0.06 / 1.00 0.13 / 1.00 0.10 / 1.00 0.10 / 1.00 0.11 / 1.00

Linear Treatment Effects; Nonlinear Main Effects
LASSO 0.92 / 0.15 0.94 / 0.07 0.90 / 0.23 0.96 / 0.16 0.78 / 0.45 0.86 / 0.31
R.Tree 0.26 / 0.54 0.42 / 0.59 0.42 / 0.81 0.47 / 0.83 0.33 / 0.93 0.38 / 0.93
C.Tree 0.39 / 0.66 0.53 / 0.66 0.45 / 0.86 0.52 / 0.88 0.34 / 0.96 0.41 / 0.95
LASSO(α = 0.2) 0.06 / 0.96 0.18 / 0.97 0.27 / 0.97 0.36 / 0.97 0.19 / 0.99 0.30 / 0.99
R.Tree(α = 0.2) 0.00 / 0.97 0.04 / 0.98 0.10 / 0.99 0.14 / 0.99 0.07 / 1.00 0.11 / 1.00
C.Tree(α = 0.2) 0.04 / 0.97 0.14 / 0.98 0.17 / 0.99 0.22 / 0.99 0.13 / 0.99 0.19 / 1.00
LASSO(α = 0.05) 0.01 / 0.99 0.07 / 0.99 0.14 / 0.99 0.24 / 0.99 0.08 / 1.00 0.20 / 1.00
R.Tree(α = 0.05) 0.00 / 0.99 0.01 / 0.99 0.05 / 1.00 0.08 / 1.00 0.03 / 1.00 0.05 / 1.00
C.Tree(α = 0.05) 0.01 / 0.99 0.05 / 0.99 0.10 / 0.99 0.16 / 1.00 0.06 / 1.00 0.13 / 1.00

Nonlinear Treatment Effects; Linear Main Effects
LASSO 0.97 / 0.12 1.00 / 0.01 0.85 / 0.24 0.99 / 0.06 0.74 / 0.47 0.92 / 0.21
R.Tree 0.49 / 0.48 0.79 / 0.79 0.41 / 0.78 0.38 / 0.87 0.36 / 0.93 0.33 / 0.94
C.Tree 0.56 / 0.64 0.78 / 0.79 0.37 / 0.85 0.38 / 0.87 0.32 / 0.95 0.32 / 0.94
LASSO(α = 0.2) 0.22 / 0.95 0.41 / 0.96 0.21 / 0.98 0.22 / 0.97 0.16 / 0.99 0.20 / 0.99
R.Tree(α = 0.2) 0.16 / 0.97 0.21 / 0.99 0.14 / 0.99 0.10 / 0.99 0.10 / 1.00 0.09 / 0.99
C.Tree(α = 0.2) 0.19 / 0.97 0.18 / 0.99 0.15 / 0.99 0.12 / 0.99 0.11 / 1.00 0.12 / 1.00
LASSO(α = 0.05) 0.12 / 0.98 0.23 / 0.99 0.12 / 0.99 0.14 / 0.99 0.08 / 1.00 0.13 / 1.00
R.Tree(α = 0.05) 0.10 / 0.99 0.07 / 1.00 0.09 / 1.00 0.05 / 0.99 0.06 / 1.00 0.04 / 1.00
C.Tree(α = 0.05) 0.10 / 0.99 0.07 / 1.00 0.09 / 1.00 0.06 / 1.00 0.06 / 1.00 0.06 / 1.00

Nonlinear Treatment Effects; Nonlinear Main Effects
LASSO 0.96 / 0.14 0.97 / 0.07 0.85 / 0.22 0.93 / 0.15 0.73 / 0.44 0.84 / 0.30
R.Tree 0.38 / 0.55 0.61 / 0.63 0.34 / 0.79 0.36 / 0.80 0.25 / 0.93 0.27 / 0.93
C.Tree 0.55 / 0.67 0.72 / 0.70 0.33 / 0.85 0.41 / 0.85 0.24 / 0.95 0.28 / 0.95
LASSO(α = 0.2) 0.11 / 0.95 0.36 / 0.97 0.15 / 0.98 0.21 / 0.97 0.11 / 0.99 0.16 / 0.99
R.Tree(α = 0.2) 0.03 / 0.98 0.10 / 0.98 0.07 / 0.99 0.09 / 0.99 0.04 / 1.00 0.07 / 1.00
C.Tree(α = 0.2) 0.09 / 0.97 0.26 / 0.99 0.11 / 0.99 0.14 / 0.98 0.07 / 1.00 0.11 / 0.99
LASSO(α = 0.05) 0.03 / 0.99 0.18 / 0.99 0.07 / 0.99 0.12 / 0.99 0.04 / 1.00 0.10 / 1.00
R.Tree(α = 0.05) 0.00 / 0.99 0.04 / 1.00 0.03 / 1.00 0.05 / 1.00 0.01 / 1.00 0.03 / 1.00
C.Tree(α = 0.05) 0.02 / 0.99 0.12 / 0.99 0.05 / 1.00 0.09 / 0.99 0.03 / 1.00 0.07 / 1.00

Abbreviations: RF: random forest; SL: super learner; R.Tree: regression tree; C.Tree: conditional inference
tree

15



16

Table S6. Mean squared error across estimating subjects’ conditional average treatment
effects across across all tested combinations of Step 1 (columns) and Step 2 (rows)
methods

p = 10 p = 20 p = 50

RF SL RF SL RF SL

Homogeneous Treatment Effects; Linear Main Effects
LASSO 0.48 0.70 0.53 1.03 0.66 1.41
R.Tree 1.06 0.44 0.94 0.53 1.03 0.59
C.Tree 0.72 0.43 0.67 0.52 0.75 0.58
LASSO(α = 0.2) 0.08 0.07 0.08 0.07 0.09 0.07
R.Tree(α = 0.2) 0.18 0.12 0.18 0.14 0.21 0.14
C.Tree(α = 0.2) 0.17 0.12 0.17 0.13 0.19 0.13
LASSO(α = 0.05) 0.07 0.07 0.08 0.07 0.09 0.06
R.Tree(α = 0.05) 0.10 0.09 0.11 0.09 0.13 0.09
C.Tree(α = 0.05) 0.10 0.08 0.11 0.09 0.12 0.08

Homogeneous Treatment Effects; Nonlinear Main Effects
LASSO 0.59 1.02 0.62 1.05 0.81 1.52
R.Tree 1.44 1.68 1.14 1.34 1.34 1.54
C.Tree 1.01 1.19 0.79 0.93 0.91 1.01
LASSO(α = 0.2) 0.11 0.08 0.10 0.08 0.12 0.08
R.Tree(α = 0.2) 0.28 0.26 0.23 0.22 0.30 0.26
C.Tree(α = 0.2) 0.24 0.21 0.20 0.18 0.26 0.21
LASSO(α = 0.05) 0.10 0.08 0.09 0.08 0.11 0.08
R.Tree(α = 0.05) 0.17 0.14 0.14 0.12 0.17 0.14
C.Tree(α = 0.05) 0.15 0.12 0.12 0.10 0.17 0.12

Linear Treatment Effects; Linear Main Effects
LASSO 0.54 0.70 0.71 1.04 0.89 1.42
R.Tree 1.15 0.49 1.37 0.82 1.58 0.87
C.Tree 0.86 0.49 1.17 0.80 1.34 0.85
LASSO(α = 0.2) 0.34 0.31 0.91 0.77 0.98 0.78
R.Tree(α = 0.2) 0.47 0.38 1.06 1.00 1.16 0.99
C.Tree(α = 0.2) 0.45 0.38 1.02 0.96 1.11 0.95
LASSO(α = 0.05) 0.36 0.34 1.04 0.91 1.09 0.93
R.Tree(α = 0.05) 0.42 0.38 1.11 1.11 1.19 1.09
C.Tree(α = 0.05) 0.41 0.37 1.07 1.06 1.15 1.04

Linear Treatment Effects; Nonlinear Main Effects
LASSO 0.66 1.16 0.78 1.09 1.05 1.60
R.Tree 1.61 1.80 1.65 1.68 2.02 2.00
C.Tree 1.14 1.28 1.32 1.32 1.57 1.52
LASSO(α = 0.2) 0.40 0.35 0.97 0.84 1.07 0.90
R.Tree(α = 0.2) 0.59 0.56 1.23 1.18 1.36 1.28
C.Tree(α = 0.2) 0.55 0.50 1.12 1.07 1.27 1.16
LASSO(α = 0.05) 0.40 0.37 1.09 0.98 1.17 1.02
R.Tree(α = 0.05) 0.47 0.45 1.23 1.19 1.30 1.24
C.Tree(α = 0.05) 0.46 0.44 1.16 1.10 1.26 1.16

Nonlinear Treatment Effects; Linear Main Effects
LASSO 0.70 0.80 0.85 1.17 1.06 1.57
R.Tree 1.31 0.56 1.32 0.72 1.53 0.81
C.Tree 1.01 0.57 1.10 0.72 1.27 0.81
LASSO(α = 0.2) 0.65 0.59 0.82 0.74 0.88 0.77
R.Tree(α = 0.2) 0.71 0.63 0.84 0.77 0.97 0.80
C.Tree(α = 0.2) 0.70 0.64 0.83 0.76 0.95 0.78
LASSO(α = 0.05) 0.68 0.65 0.88 0.83 0.93 0.85
R.Tree(α = 0.05) 0.71 0.69 0.88 0.86 0.97 0.88
C.Tree(α = 0.05) 0.70 0.68 0.87 0.84 0.96 0.86

Nonlinear Treatment Effects; Nonlinear Main Effects
LASSO 0.82 1.30 0.90 1.20 1.20 1.73
R.Tree 1.80 1.81 1.57 1.57 1.94 1.89
C.Tree 1.29 1.29 1.21 1.16 1.49 1.34
LASSO(α = 0.2) 0.72 0.64 0.86 0.77 0.94 0.84
R.Tree(α = 0.2) 0.91 0.86 1.02 0.94 1.15 1.05
C.Tree(α = 0.2) 0.84 0.75 0.93 0.85 1.09 0.93
LASSO(α = 0.05) 0.74 0.69 0.92 0.85 0.98 0.90
R.Tree(α = 0.05) 0.80 0.77 0.99 0.94 1.06 1.00
C.Tree(α = 0.05) 0.79 0.74 0.96 0.88 1.05 0.95

Abbreviations: RF: random forest; SL: super learner; R.Tree: regression tree; C.Tree:
conditional inference tree
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Table S7. Demographic summary of the study population at baseline. Values are mean (SD) for numeric covariates and N (%) for
categorical covariates.

Covariate Overall (N=921) Control (N=198) Gradual (N=383) Immediate (N=340)

Age 46.0 (13.3) 45.5 (13.3) 45.4 (13.0) 47.0 (13.7)
Gender

Female 421 (45.7%) 90 (45.5%) 173 (45.2%) 158 (46.5%)
Male 500 (54.3%) 108 (54.5%) 210 (54.8%) 182 (53.5%)

Race
Black 279 (30.3%) 61 (30.8%) 115 (30.0%) 103 (30.3%)
Other 67 (7.3%) 16 (8.1%) 29 (7.6%) 22 (6.5%)
White 575 (62.4%) 121 (61.1%) 239 (62.4%) 215 (63.2%)

Education
Less than High School 75 (8.1%) 18 (9.1%) 26 (6.8%) 31 (9.1%)
High School 294 (31.9%) 65 (32.8%) 124 (32.4%) 105 (30.9%)
More than High School 552 (59.9%) 115 (58.1%) 233 (60.8%) 204 (60.0%)

CES
Satisfaction 4.7 (1.3) 4.7 (1.2) 4.7 (1.4) 4.6 (1.3)
Psych Reward 3.0 (1.4) 3.0 (1.3) 3.1 (1.4) 3.0 (1.4)
Aversion 1.3 (0.57) 1.3 (0.6) 1.2 (0.49) 1.3 (0.64)
Enjoy Sensation 3.4 (1.7) 3.5 (1.7) 3.4 (1.8) 3.4 (1.6)
Reduce Craving 4.6 (1.9) 4.5 (1.8) 4.5 (2.0) 4.6 (1.8)

WISDM
Affiliative 2.5 (1.7) 2.5 (1.7) 2.5 (1.8) 2.4 (1.7)
Automaticity 3.8 (1.8) 3.8 (1.7) 3.8 (1.9) 3.8 (1.8)
Loss of Control 3.8 (1.6) 3.9 (1.6) 3.8 (1.6) 3.8 (1.6)
Cognitive 2.9 (1.7) 2.9 (1.8) 2.9 (1.8) 2.8 (1.6)
Craving 4.3 (1.6) 4.4 (1.6) 4.3 (1.7) 4.3 (1.6)
Cue 3.8 (1.6) 3.8 (1.5) 3.7 (1.7) 3.8 (1.6)
Social 3.7 (2.0) 3.8 (2.1) 3.8 (2.0) 3.6 (2.0)
Taste 4.4 (1.8) 4.5 (1.7) 4.3 (1.8) 4.4 (1.7)
Tolerance 4.6 (1.6) 4.6 (1.6) 4.6 (1.7) 4.6 (1.6)
Weight 2.0 (1.4) 2.2 (1.5) 2.0 (1.4) 2.0 (1.4)
Affective 3.3 (1.7) 3.4 (1.7) 3.2 (1.7) 3.2 (1.7)

QSU
Factor 1 17.7 (9.2) 17.7 (9.4) 17.9 (9.3) 17.5 (9.0)
Factor 2 9.8 (6.4) 9.9 (6.3) 9.7 (6.4) 9.8 (6.3)

PANAS
Positive 31.6 (8.8) 31.1 (8.7) 32.1 (9.3) 31.5 (8.2)
Negative 15.0 (5.3) 15.6 (6.1) 14.8 (5.1) 14.9 (5.1)

FTND 4.2 (1.7) 4.0 (1.8) 4.2 (1.7) 4.3 (1.7)
CESD 6.0 (5.6) 6.4 (5.7) 6.0 (5.9) 5.8 (5.2)
SMAST 2.9 (2.1) 3.2 (2.3) 2.8 (2.1) 2.9 (2.0)
DAST 1.7 (2.0) 1.7 (2.0) 1.7 (1.9) 1.8 (2.0)
CO 19.1 (9.4) 19.6 (9.7) 18.9 (9.6) 19.0 (9.1)
PSS 4.2 (2.9) 4.3 (3.0) 4.1 (2.9) 4.2 (2.7)
CPD 17.1 (8.6) 17.0 (8.4) 16.8 (8.2) 17.5 (8.9)
TNE 68.8 (38.0) 70.0 (39.2) 68.0 (38.8) 69.0 (36.4)
NNAL 1.8 (1.8) 2.1 (2.5) 1.7 (1.4) 1.9 (1.7)
PHET 3.0 (3.0) 3.1 (2.5) 2.7 (2.1) 3.4 (3.8)
CEMA 0.88 (0.73) 0.92 (0.83) 0.86 (0.7) 0.89 (0.69)
PGEM 72.5 (152.8) 66.3 (61.4) 80.0 (216.6) 67.7 (90.3)
ISO 1.3 (0.76) 1.3 (0.86) 1.3 (0.73) 1.3 (0.73)
Weight 86.9 (22.5) 82.2 (19.9) 88.9 (23.2) 87.5 (22.9)
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Table S8. Number of variables determined to contribute to treatment effect
heterogeneity for a given comaprison of treatents on change in cigarettes per
day. The number of covariates which had a nonzero effect in the Step 2
Virtual Twins model (rows) fit for subjects’ estimated conditional average
treamtent effects with a given Step 1 model (columns) is reported.

Immediate vs. Gradual Immediate vs. Control

RF SL RF SL

LASSO 28 33 27 23
R.Tree 6 5 3 4
C.Tree 5 6 3 3
LASSO(α = 0.2) 2 3 0 0
R.Tree(α = 0.2) 1 1 1 0
C.Tree(α = 0.2) 1 1 0 0
LASSO(α = 0.05) 2 2 0 0
R.Tree(α = 0.05) 1 1 0 0
C.Tree(α = 0.05) 1 0 0 0

Abbreviations: RF: random forest; SL: super learner; R.Tree: regression tree;
C.Tree: conditional inference tree
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