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Introduction

A Question
What do we need to consider when we work with large
biobank data?

• Data privacy and security
• Data access and availability
• Computational costs
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Introduction

Key Idea

How can we leverage pre-computed summary statistics
(PCSS) from biobanks to estimate statistical models fit
using individual participant data (IPD)?

Existing Methods:
• Multi-trait association tests (Ray & Boehnke, 2018; Dutta

et al., 2019; Guo & Wu, 2019)
• Linear combinations of phenotypes (Gasdaska et al., 2019;

Wolf et al., 2020)
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Introduction

Goal
Approximate linear models for products of phenotypes of
the form:

m∏
k=1

yk = Xβ + ε

using PCSS with flexible choice of covariates.

Why Products?
• Ratios of phenotypes
• Logical combinations of phenotypes

yi1 ∧ yi2 = yi1yi2,

yi1 ∨ yi2 = 1− (1− yi1)(1− yi2)
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Introduction

CVD = Cardiovascular disease; Cov = Covariance

Biobank

GWAS 1
CVD = β0 + β1SNP + ε 

GWAS 2
Stroke = β0 + β1SNP + ε

GWAS 3
Smoking β0 + β1SNP + ε

Literature

   CVD or Stroke
=

β0 + β1SNP + β2Smoking + ε

Cov(CVD, Stroke, Smoking)

SNP Information

Cov(CVD, SNP)

MAF

Cov(Stroke, SNP)

Cov(Smoking, SNP)
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Assumed PCSS
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Regression with PCSS

Theorem

For the regression model y = Xβ + ε, with εi
iid∼ N(0, σ2), the

ordinary least squares estimate for β is

β̂ = (X ′X )−1X ′y

This can be computed via PCSS using the facts that:

X ′X = (n − 1)S(X ) + nx̄ x̄ ′ (1)
X ′y = (n − 1)(sy ,x1 , . . . , sy ,xp )′ + nȳ x̄ (2)

(Wolf et al., 2020)
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Regression with PCSS

Theorem

The estimated variance of β̂ is∗

V̂ar(β̂) = σ̂2(X ′X )−1

This can be calculated via PCSS using previous equalities and
the fact that:

σ̂2 = [(n − 1)s2
y + nȳ2 − β̂′X ′y ]/(n − p) (3)

(Wolf et al., 2020)
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Modeling Phenotype Products

To approximate the covariance between xj and the product
w = y1y2 we estimate the conditional mean of w given xj as

g(w |x) = g(y1|x)g(y2|x) + h(y1, y2|x), (4)

which gives the covariance estimate

sxj ,w ≈
∑
x∈Sj

fj(x)(x − x̄j)g(w |x) (5)
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Simulation Studies

We simulated data through the model:

u(yik ) = βk0 +
3∑

j=1

xijβkj + εik

where
• u(yik ) = yik or logit(Pr(Yik = 1))

• x1 = SNP’s minor allele counts
• x2 = continuous covariate
• x3 = binary covariate



15/24

Simulation Study Estimating β
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Simulation Study Estimating p-values
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Real Data Analysis

Fatty acids and conversion ratios
• Fatty acids are biomarkers of various cardiometabolic

and cognitive health outcomes
• Conversion ratios illustrate how fatty acids are

converted from one fatty acid to the next
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Real Data Analysis

Framingham Heart Study (Mailman et al., 2007)
• 12 fatty acid conversion ratios
• 362,330 SNPs
• 4,347,960 models: FA Ratio ∼ SNP + age + sex

• Disagreement rate of 10/(4.3× 106)
• Of the 10 disagreements:

• 4 where PCSS failed to reject when IPD rejected H0,
• 6 where PCSS rejected when IPD failed to reject
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Discussion

Takeaway

We can approximate linear models for products and
logical combinations of phenotypes with a flexible choice
of covariates using only readily available pre-computed
summary statistics.
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Discussion

Limitations and Future Work
• Assessing the compounding of errors when modeling the

product of ≥ 4 phenotypes
• Measuring sensitivity to missing data and other

assumption violations
• Assumes access to certain PCSS
• Accounting for related individuals through kinship matrices
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Thank you!

Slides: https://bit.ly/IGESProduct
R Package: pcsstools
Twitter: @ jackmwolf
Email: WolfX681@umn.edu

https://bit.ly/IGESProduct
https://cran.r-project.org/package=pcsstools
https://twitter.com/_jackmwolf
mailto:WolfX681@umn.edu
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